3.575 \(\int \frac{\sec (c+d x)}{(a+b \tan (c+d x))^3} \, dx\)

Optimal. Leaf size=155 \[ -\frac{3 a b \sec (c+d x)}{2 d \left (a^2+b^2\right )^2 (a+b \tan (c+d x))}-\frac{b \sec (c+d x)}{2 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^2}-\frac{\left (2 a^2-b^2\right ) \sec (c+d x) \tanh ^{-1}\left (\frac{b-a \tan (c+d x)}{\sqrt{a^2+b^2} \sqrt{\sec ^2(c+d x)}}\right )}{2 d \left (a^2+b^2\right )^{5/2} \sqrt{\sec ^2(c+d x)}} \]

[Out]

-((2*a^2 - b^2)*ArcTanh[(b - a*Tan[c + d*x])/(Sqrt[a^2 + b^2]*Sqrt[Sec[c + d*x]^2])]*Sec[c + d*x])/(2*(a^2 + b
^2)^(5/2)*d*Sqrt[Sec[c + d*x]^2]) - (b*Sec[c + d*x])/(2*(a^2 + b^2)*d*(a + b*Tan[c + d*x])^2) - (3*a*b*Sec[c +
 d*x])/(2*(a^2 + b^2)^2*d*(a + b*Tan[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.114242, antiderivative size = 155, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.263, Rules used = {3512, 745, 807, 725, 206} \[ -\frac{3 a b \sec (c+d x)}{2 d \left (a^2+b^2\right )^2 (a+b \tan (c+d x))}-\frac{b \sec (c+d x)}{2 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^2}-\frac{\left (2 a^2-b^2\right ) \sec (c+d x) \tanh ^{-1}\left (\frac{b-a \tan (c+d x)}{\sqrt{a^2+b^2} \sqrt{\sec ^2(c+d x)}}\right )}{2 d \left (a^2+b^2\right )^{5/2} \sqrt{\sec ^2(c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]/(a + b*Tan[c + d*x])^3,x]

[Out]

-((2*a^2 - b^2)*ArcTanh[(b - a*Tan[c + d*x])/(Sqrt[a^2 + b^2]*Sqrt[Sec[c + d*x]^2])]*Sec[c + d*x])/(2*(a^2 + b
^2)^(5/2)*d*Sqrt[Sec[c + d*x]^2]) - (b*Sec[c + d*x])/(2*(a^2 + b^2)*d*(a + b*Tan[c + d*x])^2) - (3*a*b*Sec[c +
 d*x])/(2*(a^2 + b^2)^2*d*(a + b*Tan[c + d*x]))

Rule 3512

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(d^(2
*IntPart[m/2])*(d*Sec[e + f*x])^(2*FracPart[m/2]))/(b*f*(Sec[e + f*x]^2)^FracPart[m/2]), Subst[Int[(a + x)^n*(
1 + x^2/b^2)^(m/2 - 1), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && NeQ[a^2 + b^2, 0] &&
 !IntegerQ[m/2]

Rule 745

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m + 1)*(a + c*x^2)^(p
 + 1))/((m + 1)*(c*d^2 + a*e^2)), x] + Dist[c/((m + 1)*(c*d^2 + a*e^2)), Int[(d + e*x)^(m + 1)*Simp[d*(m + 1)
- e*(m + 2*p + 3)*x, x]*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[
m, -1] && ((LtQ[m, -1] && IntQuadraticQ[a, 0, c, d, e, m, p, x]) || (SumSimplerQ[m, 1] && IntegerQ[p]) || ILtQ
[Simplify[m + 2*p + 3], 0])

Rule 807

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Simp[((e*f - d*g
)*(d + e*x)^(m + 1)*(a + c*x^2)^(p + 1))/(2*(p + 1)*(c*d^2 + a*e^2)), x] + Dist[(c*d*f + a*e*g)/(c*d^2 + a*e^2
), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0]
&& EqQ[Simplify[m + 2*p + 3], 0]

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sec (c+d x)}{(a+b \tan (c+d x))^3} \, dx &=\frac{\sec (c+d x) \operatorname{Subst}\left (\int \frac{1}{(a+x)^3 \sqrt{1+\frac{x^2}{b^2}}} \, dx,x,b \tan (c+d x)\right )}{b d \sqrt{\sec ^2(c+d x)}}\\ &=-\frac{b \sec (c+d x)}{2 \left (a^2+b^2\right ) d (a+b \tan (c+d x))^2}-\frac{\sec (c+d x) \operatorname{Subst}\left (\int \frac{-2 a+x}{(a+x)^2 \sqrt{1+\frac{x^2}{b^2}}} \, dx,x,b \tan (c+d x)\right )}{2 b \left (a^2+b^2\right ) d \sqrt{\sec ^2(c+d x)}}\\ &=-\frac{b \sec (c+d x)}{2 \left (a^2+b^2\right ) d (a+b \tan (c+d x))^2}-\frac{3 a b \sec (c+d x)}{2 \left (a^2+b^2\right )^2 d (a+b \tan (c+d x))}+\frac{\left (\left (2 a^2-b^2\right ) \sec (c+d x)\right ) \operatorname{Subst}\left (\int \frac{1}{(a+x) \sqrt{1+\frac{x^2}{b^2}}} \, dx,x,b \tan (c+d x)\right )}{2 b \left (a^2+b^2\right )^2 d \sqrt{\sec ^2(c+d x)}}\\ &=-\frac{b \sec (c+d x)}{2 \left (a^2+b^2\right ) d (a+b \tan (c+d x))^2}-\frac{3 a b \sec (c+d x)}{2 \left (a^2+b^2\right )^2 d (a+b \tan (c+d x))}-\frac{\left (\left (2 a^2-b^2\right ) \sec (c+d x)\right ) \operatorname{Subst}\left (\int \frac{1}{1+\frac{a^2}{b^2}-x^2} \, dx,x,\frac{1-\frac{a \tan (c+d x)}{b}}{\sqrt{\sec ^2(c+d x)}}\right )}{2 b \left (a^2+b^2\right )^2 d \sqrt{\sec ^2(c+d x)}}\\ &=-\frac{\left (2 a^2-b^2\right ) \tanh ^{-1}\left (\frac{b \left (1-\frac{a \tan (c+d x)}{b}\right )}{\sqrt{a^2+b^2} \sqrt{\sec ^2(c+d x)}}\right ) \sec (c+d x)}{2 \left (a^2+b^2\right )^{5/2} d \sqrt{\sec ^2(c+d x)}}-\frac{b \sec (c+d x)}{2 \left (a^2+b^2\right ) d (a+b \tan (c+d x))^2}-\frac{3 a b \sec (c+d x)}{2 \left (a^2+b^2\right )^2 d (a+b \tan (c+d x))}\\ \end{align*}

Mathematica [A]  time = 0.894272, size = 110, normalized size = 0.71 \[ \frac{\frac{2 \left (2 a^2-b^2\right ) \tanh ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )-b}{\sqrt{a^2+b^2}}\right )}{\left (a^2+b^2\right )^{5/2}}-\frac{b \sec (c+d x) \left (4 a^2+3 a b \tan (c+d x)+b^2\right )}{\left (a^2+b^2\right )^2 (a+b \tan (c+d x))^2}}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]/(a + b*Tan[c + d*x])^3,x]

[Out]

((2*(2*a^2 - b^2)*ArcTanh[(-b + a*Tan[(c + d*x)/2])/Sqrt[a^2 + b^2]])/(a^2 + b^2)^(5/2) - (b*Sec[c + d*x]*(4*a
^2 + b^2 + 3*a*b*Tan[c + d*x]))/((a^2 + b^2)^2*(a + b*Tan[c + d*x])^2))/(2*d)

________________________________________________________________________________________

Maple [A]  time = 0.069, size = 280, normalized size = 1.8 \begin{align*}{\frac{1}{d} \left ( -2\,{\frac{1}{ \left ( \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a-2\,\tan \left ( 1/2\,dx+c/2 \right ) b-a \right ) ^{2}} \left ( -1/2\,{\frac{{b}^{2} \left ( 5\,{a}^{2}+2\,{b}^{2} \right ) \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}}{a \left ({a}^{4}+2\,{a}^{2}{b}^{2}+{b}^{4} \right ) }}-1/2\,{\frac{b \left ( 4\,{a}^{4}-7\,{a}^{2}{b}^{2}-2\,{b}^{4} \right ) \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}{ \left ({a}^{4}+2\,{a}^{2}{b}^{2}+{b}^{4} \right ){a}^{2}}}+1/2\,{\frac{{b}^{2} \left ( 11\,{a}^{2}+2\,{b}^{2} \right ) \tan \left ( 1/2\,dx+c/2 \right ) }{a \left ({a}^{4}+2\,{a}^{2}{b}^{2}+{b}^{4} \right ) }}+1/2\,{\frac{b \left ( 4\,{a}^{2}+{b}^{2} \right ) }{{a}^{4}+2\,{a}^{2}{b}^{2}+{b}^{4}}} \right ) }+{\frac{2\,{a}^{2}-{b}^{2}}{{a}^{4}+2\,{a}^{2}{b}^{2}+{b}^{4}}{\it Artanh} \left ({\frac{1}{2} \left ( 2\,a\tan \left ( 1/2\,dx+c/2 \right ) -2\,b \right ){\frac{1}{\sqrt{{a}^{2}+{b}^{2}}}}} \right ){\frac{1}{\sqrt{{a}^{2}+{b}^{2}}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)/(a+b*tan(d*x+c))^3,x)

[Out]

1/d*(-2*(-1/2*b^2*(5*a^2+2*b^2)/a/(a^4+2*a^2*b^2+b^4)*tan(1/2*d*x+1/2*c)^3-1/2*b*(4*a^4-7*a^2*b^2-2*b^4)/(a^4+
2*a^2*b^2+b^4)/a^2*tan(1/2*d*x+1/2*c)^2+1/2*b^2*(11*a^2+2*b^2)/(a^4+2*a^2*b^2+b^4)/a*tan(1/2*d*x+1/2*c)+1/2*b*
(4*a^2+b^2)/(a^4+2*a^2*b^2+b^4))/(tan(1/2*d*x+1/2*c)^2*a-2*tan(1/2*d*x+1/2*c)*b-a)^2+(2*a^2-b^2)/(a^4+2*a^2*b^
2+b^4)/(a^2+b^2)^(1/2)*arctanh(1/2*(2*a*tan(1/2*d*x+1/2*c)-2*b)/(a^2+b^2)^(1/2)))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*tan(d*x+c))^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.03376, size = 795, normalized size = 5.13 \begin{align*} -\frac{{\left (2 \, a^{2} b^{2} - b^{4} +{\left (2 \, a^{4} - 3 \, a^{2} b^{2} + b^{4}\right )} \cos \left (d x + c\right )^{2} + 2 \,{\left (2 \, a^{3} b - a b^{3}\right )} \cos \left (d x + c\right ) \sin \left (d x + c\right )\right )} \sqrt{a^{2} + b^{2}} \log \left (\frac{2 \, a b \cos \left (d x + c\right ) \sin \left (d x + c\right ) +{\left (a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, a^{2} - b^{2} - 2 \, \sqrt{a^{2} + b^{2}}{\left (b \cos \left (d x + c\right ) - a \sin \left (d x + c\right )\right )}}{2 \, a b \cos \left (d x + c\right ) \sin \left (d x + c\right ) +{\left (a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} + b^{2}}\right ) + 2 \,{\left (4 \, a^{4} b + 5 \, a^{2} b^{3} + b^{5}\right )} \cos \left (d x + c\right ) + 6 \,{\left (a^{3} b^{2} + a b^{4}\right )} \sin \left (d x + c\right )}{4 \,{\left ({\left (a^{8} + 2 \, a^{6} b^{2} - 2 \, a^{2} b^{6} - b^{8}\right )} d \cos \left (d x + c\right )^{2} + 2 \,{\left (a^{7} b + 3 \, a^{5} b^{3} + 3 \, a^{3} b^{5} + a b^{7}\right )} d \cos \left (d x + c\right ) \sin \left (d x + c\right ) +{\left (a^{6} b^{2} + 3 \, a^{4} b^{4} + 3 \, a^{2} b^{6} + b^{8}\right )} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*tan(d*x+c))^3,x, algorithm="fricas")

[Out]

-1/4*((2*a^2*b^2 - b^4 + (2*a^4 - 3*a^2*b^2 + b^4)*cos(d*x + c)^2 + 2*(2*a^3*b - a*b^3)*cos(d*x + c)*sin(d*x +
 c))*sqrt(a^2 + b^2)*log((2*a*b*cos(d*x + c)*sin(d*x + c) + (a^2 - b^2)*cos(d*x + c)^2 - 2*a^2 - b^2 - 2*sqrt(
a^2 + b^2)*(b*cos(d*x + c) - a*sin(d*x + c)))/(2*a*b*cos(d*x + c)*sin(d*x + c) + (a^2 - b^2)*cos(d*x + c)^2 +
b^2)) + 2*(4*a^4*b + 5*a^2*b^3 + b^5)*cos(d*x + c) + 6*(a^3*b^2 + a*b^4)*sin(d*x + c))/((a^8 + 2*a^6*b^2 - 2*a
^2*b^6 - b^8)*d*cos(d*x + c)^2 + 2*(a^7*b + 3*a^5*b^3 + 3*a^3*b^5 + a*b^7)*d*cos(d*x + c)*sin(d*x + c) + (a^6*
b^2 + 3*a^4*b^4 + 3*a^2*b^6 + b^8)*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec{\left (c + d x \right )}}{\left (a + b \tan{\left (c + d x \right )}\right )^{3}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*tan(d*x+c))**3,x)

[Out]

Integral(sec(c + d*x)/(a + b*tan(c + d*x))**3, x)

________________________________________________________________________________________

Giac [B]  time = 2.2486, size = 396, normalized size = 2.55 \begin{align*} -\frac{\frac{{\left (2 \, a^{2} - b^{2}\right )} \log \left (\frac{{\left | 2 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 2 \, b - 2 \, \sqrt{a^{2} + b^{2}} \right |}}{{\left | 2 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 2 \, b + 2 \, \sqrt{a^{2} + b^{2}} \right |}}\right )}{{\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )} \sqrt{a^{2} + b^{2}}} - \frac{2 \,{\left (5 \, a^{3} b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 2 \, a b^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 4 \, a^{4} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 7 \, a^{2} b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 2 \, b^{5} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 11 \, a^{3} b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 2 \, a b^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 4 \, a^{4} b - a^{2} b^{3}\right )}}{{\left (a^{6} + 2 \, a^{4} b^{2} + a^{2} b^{4}\right )}{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 2 \, b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - a\right )}^{2}}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*tan(d*x+c))^3,x, algorithm="giac")

[Out]

-1/2*((2*a^2 - b^2)*log(abs(2*a*tan(1/2*d*x + 1/2*c) - 2*b - 2*sqrt(a^2 + b^2))/abs(2*a*tan(1/2*d*x + 1/2*c) -
 2*b + 2*sqrt(a^2 + b^2)))/((a^4 + 2*a^2*b^2 + b^4)*sqrt(a^2 + b^2)) - 2*(5*a^3*b^2*tan(1/2*d*x + 1/2*c)^3 + 2
*a*b^4*tan(1/2*d*x + 1/2*c)^3 + 4*a^4*b*tan(1/2*d*x + 1/2*c)^2 - 7*a^2*b^3*tan(1/2*d*x + 1/2*c)^2 - 2*b^5*tan(
1/2*d*x + 1/2*c)^2 - 11*a^3*b^2*tan(1/2*d*x + 1/2*c) - 2*a*b^4*tan(1/2*d*x + 1/2*c) - 4*a^4*b - a^2*b^3)/((a^6
 + 2*a^4*b^2 + a^2*b^4)*(a*tan(1/2*d*x + 1/2*c)^2 - 2*b*tan(1/2*d*x + 1/2*c) - a)^2))/d